На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
Точка разбиения О, ближайшая точка плоскости Z
1. M и N по одну сторону плоскости
1а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 2 дм
MO + ON = 2
3*ON + ON = 2
4*ON = 2
ON = 0,5 дм
OZ = 3+0,5 = 3,5 дм
1б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 2 дм
MO + ON = 2
MO + 3*MO = 2
4*MO = 2
MO = 0,5 дм
OZ = 5-0,5 = 4,5 дм
2. M и N по разные стороны плоскости
2а.
MZ = 5 дм; NZ = 3 дм
MO = 3*ON
MN = 5+3 = 8 дм
MO + ON = 8
3*ON + ON = 8
4*ON = 8
ON = 2 дм
OZ = 3-2 = 1 дм
2б)
MZ = 5 дм; NZ = 3 дм
3*MO = ON
MN = 8 дм
MO + ON = 8
MO + 3*MO = 8
4*MO = 8
MO = 2 дм
OZ = 5-2 = 3 дм