На прямой отложены два равных отрезка ме и ек. на отрезке ме взята точка с, которая делит его в отношении 5: 3, считая от точки м. найдите расстояние между серединами отрезков мс и ек, если се-9 см.
1)Плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см. 2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
Поскольку AN - биссектриса угла В, то ∠BAK=∠ KAN. ∠BNK=∠KAN как накрест лежащие ⇒ ∠BAK=∠BNK. А значит мы получим, что треугольник ABN равнобедренный. А значит AB=BN. Треугольник ΔABK=ΔBKN (по двум углам и стороне между ними: BN=AB, ∠BNK=∠BNK, ∠ABK=∠NBK поскольку BK биссектриса).
Проведем высоту в треугольнике KBN из К на сторону BN. Поскольку ΔABK=ΔBKN, то и высоты равны KH=KH₁=1. Если опустить высоту из точки К до стороны AD, то получим высоту KH₂. ΔKBN=ΔAKM (по стороне и двум прилежащим к ним углам: AK=KN, ∠KAM=∠BNK, ∠AKM=∠BKN - вертикальные). Значит KH₁=KH₂=1 ⇒ H₁H₂=1*2=2 Sabcd=BC*H₁H₂=2*2=4
2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°