Площина ß проходить через середини сторін de і df трикутника def. знайдіть відстань між точками перетину площинизі сторонами de і df якщо ef=6,3см. терміново треба вирішити 10 клас
Обозначим М - точку середины стороны АС. Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна Найдём координаты точки М. хА = 0; хС = 0; хМ = (хС - хА)/2 = 0 уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2 ВМ - является медианой и, одновременно, высотой. Следовательно ВМ ⊥ АС, то есть отрезок ВМ горизонтален. Тогда ордината точки В равна ординате точки М: уВ = 2. Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4 Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3 Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3 ответ: В(2√3; 2) или В(-2√3; 2)
A). Теорема: Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости. В нашем случае прямая CD, не лежащая в плоскости α, параллельна прямой АВ, лежащей в плоскости α (как противоположные стороны ромба). Следовательно, прямая CD параллельна плоскости α. Все точки прямой, параллельной плоскости, равноудалены от этой плоскости. Следовательно, точки D и С, принадлежащие прямой СD, параллельной плоскости α, равноудалены от плоскости α, то есть расстояние СN от точки С до плоскости α равно расстоянию DM от точки D до этой плоскости. ответ: искомое расстояние равно а/2.
б). Определение: Полуплоскости, образующие двугранный угол, называются гранями двугранного угла. Общая для граней прямая АВ (линия пересечения плоскостей) называется ребром двугранного угла. Обозначение двугранного угла: DABМ, где D и M -это любые точки, лежащие в разных гранях, а АВ – ребро двугранного угла. Двугранные углы измеряются линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Расстояние от точки D до плоскости α равно длине перпендикуляра DМ, опущенного на плоскость из этой точки. Проведем через прямую DМ плоскость, перпендикулярную прямой АВ. Эта плоскость и даст нам линейный угол DHM двугранного угла DABМ (угла между плоскостями ромба АВСD и α).
в). Итак, имеем прямоугольный треугольник DHM (угол DMH=90°) с катетом DM, равным расстоянию от точки D до плоскости α и гипотенузой DH, перпендикулярной стороне ромба. Sin(DHM)=DM/DH (отношение противолежащего катета к гипотенузе), где DH - высота ромба. В прямоугольном треугольнике АНD SinA=DH/DA. Тогда DH=DA*Sin60°=a√3/2. DH=a√3/2. DM=a/2 (дано). Тогда Sin(DHM)=DM/DH=(a/2)/(a√3/2)=1/√3 или √3/3. ответ: Sin(DHM)=√3/3.
Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна
Найдём координаты точки М.
хА = 0; хС = 0; хМ = (хС - хА)/2 = 0
уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2
ВМ - является медианой и, одновременно, высотой. Следовательно
ВМ ⊥ АС, то есть отрезок ВМ горизонтален.
Тогда ордината точки В равна ординате точки М: уВ = 2.
Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4
Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3
Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3
ответ: В(2√3; 2) или В(-2√3; 2)