1) если в основании прямоугольник со сторонами а и в, площадь боковой поверхности равна 2(a + b) * c = 2 *10 * 3 = 60 /см²/; площадь полной поверхности = S(бок) + 2S(осн) = 60 + 2 *6 * 4 = 60 + 48 = 108/ см²/
2) Если в основании прямоугольник со сторонами а и с, то площадь боковой пов. равна 2(a + с) * в=2*9*4=72/см²/ ; площадь полной поверхности = S(бок) + 2S(осн) 72+2*6*3=108/см²/,
3) если в основании прямоугольник со сторонами в и с, площадь боковой поверхности равна 2(в + с) * а = 2 * 7 * 6= 84/см²/; площадь полной поверхности = S(бок) + 2S(осн) = 84 + 2 *4 *3 = 84 + 24 = 108/ см²/
Конечно, площадь полной поверхности не менялась оттого, что мы меняли основания.
Надеюсь решила, правильно)
Решение: точка О - центр вписанной окружности радиусом r
Точка F - основание высоты равнобедренного треугольника на стороне ac
из точки Е на стороне ab - высоту треугольника abO. ее длинна равна r
Треугольники abF и ebO - подобны по двум углам.
Пропорция Fb/ab = eb/Ob
Fb=Ob+FO=15+r
ab=30
Ob = 15
(15+r)/30 = / 15
После приведения
225+30r+ = 900 - 4
+ 6r -135 =0
Решение квадратного уравнения - два ответа: 9 и -15
r = 9
Зная радиус находим длину биссектрисы Fb = 15+9 =24
В треуг. abF по теореме Пифагора сторона af = 18
P = 30+30+18*2 = 96
ответ:96
2. 336.
4. 64.
Объяснение:
2) ABCD - прямоугольник => BC = AD = 28 см ; AC = BD, AO = OC = BO = OD =>
треугольник AOB равнобедренный, AD - основание.
OH - высота (по условию) => OH - медиана (по теореме о высоте, проведенной из вершины равнобедренного треугольника) => AH = HB.
AO = OC, AH = HD => OH - средняя линия треугольника ADC => OH = 1/2 * DC =>
DC = 6 * 2 = 12 см.
Площадь ABCD = AD * DC = 28 * 12 = 336 см квадратных.
ответ : 336 см квадратных.
4) Достроим прямую AB и точку M до прямоугольника KBCM.
ABCD - квадрат => AB = BC = DC = AD = MD.
Площадь треугольника MBC = 1/2 * MC * BC.
MC = 2 * AB, BC = AB => Площадь треугольника MBC = 1/2 * 2 * AB * AB = AB^2 (AB в квадрате).
64 = AB^2;
AB = (корень из 64)
AB = 8 см.
Площадь квадрата ABCD = AB^2.
Площадь квадрата ABCD = 8 * 8 = 64 см квадратных.
ответ : 64 см квадратных.