Зоднієї точки до прямої проведено дві рівні між собою похилі. проекція однієї з похилих на цю пряму дорівнює 8 см. знайдіть відстань між основами похили
На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х Ширина стала =2х; Длина= стала 2х; Площадь с окантовкой стала=558см^2 S -площадь прямоугольника; a -ширина b -длина; S=a•b; Уравнение (10+2х)•(20+2х)=504 10•20+10•2х+2х•20+2х•2х-504=0 200+20х+40х+4х^2-504=0 4х^2+60х-304=0 Разделим на 2 все 2х^2+30х-152=0 D=b^2-4•a•c= 30^2- 4•2•(-152)= 900-8•(-152)=900+1216=2116 X1,2=(-b+-корень из D)/(2•a); X1=(-30-46)/2•2=-76/4=-19не подходит; Х2=(-30+46)/2•2=16/4=4 см
Трапеция равнобокая, значит высота делит большее основание на два отрезка, меньший из которых равен полуразности двух оснований (свойство), то есть равен "а". Тогда CosA= a/2a =1/2. То есть <A=<D=60° (трапеция равнобокая). <B=<C=180°-60° =120° (так как углы трапеции, прилежащие к боковым сторонам, в сумме равны 180°). Итак, углы трапеции равны <A=<D=60°, <B=<C=120°, а так как боковая сторона (гипотенуза) всегда больше разности большего и меньшего оснований (катета) по теореме о соотношении сторон и углов треугольника, углы при большем основании острые, углы при меньшем основании тупые, что и требовалось доказать.
Значит обозначаем окантовка =Х
Ширина стала =2х;
Длина= стала 2х;
Площадь с окантовкой стала=558см^2
S -площадь прямоугольника; a -ширина b -длина;
S=a•b;
Уравнение
(10+2х)•(20+2х)=504
10•20+10•2х+2х•20+2х•2х-504=0
200+20х+40х+4х^2-504=0
4х^2+60х-304=0
Разделим на 2 все
2х^2+30х-152=0
D=b^2-4•a•c= 30^2- 4•2•(-152)=
900-8•(-152)=900+1216=2116
X1,2=(-b+-корень из D)/(2•a);
X1=(-30-46)/2•2=-76/4=-19не подходит;
Х2=(-30+46)/2•2=16/4=4 см
ответ: ширина окантовки 4 см