1) четыре, если исключается ва
риант, когда в любой тройке точ
ки расположены на одной прямой.
2)Беконечное множество, если
хотя бы в одной тройке точки
находятся на одной прямой.
Объяснение:
По условию задачи заданы 4
точки, не лежащие в одной плос
кости. Через любые три точки,
не лежащие на одной прямой,
можно провести плоскость и
притом тоько одну. Сколько
различных таких троек опреде
ляют четыре точки?
Считаем по формуле сочетаний:
С(из 4 по3)=4!/1!3!=4
Четыре различных варианта.
ответ: четыре плоскости, если
ввести оговорку, что любые
три точки не лежат на одной
прямой.
2) Вариант, когда любые из
четырех точек не лежат в од
ной плоскости, не ислючает
возможности расположения
трех из них на одной прямой.
Если любые три точки из за
данных четырех лежат на од
ной прямой, то число плоскос
тей, проходящих через три точ
ки, лежащие на одной прямой
бесконечно.
ответ: бесконечное число
плоскостей.
1) четыре, если исключается ва
риант, когда в любой тройке точ
ки расположены на одной прямой.
2)Беконечное множество, если
хотя бы в одной тройке точки
находятся на одной прямой.
Объяснение:
По условию задачи заданы 4
точки, не лежащие в одной плос
кости. Через любые три точки,
не лежащие на одной прямой,
можно провести плоскость и
притом тоько одну. Сколько
различных таких троек опреде
ляют четыре точки?
Считаем по формуле сочетаний:
С(из 4 по3)=4!/1!3!=4
Четыре различных варианта.
ответ: четыре плоскости, если
ввести оговорку, что любые
три точки не лежат на одной
прямой.
2) Вариант, когда любые из
четырех точек не лежат в од
ной плоскости, не ислючает
возможности расположения
трех из них на одной прямой.
Если любые три точки из за
данных четырех лежат на од
ной прямой, то число плоскос
тей, проходящих через три точ
ки, лежащие на одной прямой
бесконечно.
ответ: бесконечное число
плоскостей.
ответ:
объяснение:
1. вк=ав/2, значит вк= 1/2, а вк перпендикульярна ад, следовательно угол а = 30 гр. (т.к. если катет равен половине гипотинузы то угол лежащий против этого катета равен 30 гр.)
угол а=углу с, т.к. авсд - параллелограмм.
угол авк=60 гр., а
угол в = 60+90=150 гр. угол в= углу д
2.
авсд-трапеция
ад-?
из вершины с проводим перпендикуляр се
решение
ав=вс=10(за условием)
ав=се=10(по свойству)
∠е=90° ⇒ ∠д=∠с=45°⇒δсед-прямоугольный(∠е=90°)
се=ед=10 ⇒ δсед-равнобедренный
ад=ае+ед(при условии)
ад=10+10=20 см
ад=20 см
3.
дано: ромб abcd
угол а = 31°
решение:
в ромбе диагонали являются биссектрисами =>
=> 31/2=15.5 - угол оаd
диагонали пересекаются под прямым углом =>
=> угол аоd = 90°
сумма углов треугольника равна 180° =>
=> 180-90-15.5=74.5° - угол аdo
отв: 74.5°, 90°, 15.5°
4
на фото