Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°
1) нарисуй все в координатах, станет понятно.
получается перевернутый равносторонний триугольник
находим боковую сторону 1"(еденица в крадрате) + 1" = 2( под корнем)
так как таких сторон две то 2*2( не забывай вторая двойка под корнем)=
и основание по рисунку = 2 ( т.к растояние от точки (0,3) до (2.3) равно 2 по одной из осей)
периметр равен 2+2* 2( последняя 2 под корнем)