М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
miroslav1234
miroslav1234
05.03.2021 10:18 •  Геометрия

Биссектриса ов делит угол аос, который составляет 174 градуса, на две части. найди углы аов и авс и проведи все его медианы

👇
Ответ:
maloyzolotov
maloyzolotov
05.03.2021

Дано:AOC=174°

OB бис. угла АОС

Найти:АОВ и АВС

1)АОВ=АОС:2(ТК.биссекстриса делит

угол на 2 равные части)174:2=87°

2)АОВ=АВС,значит АВС=87°

ответ:АОБ и АОС=87°

4,5(85 оценок)
Открыть все ответы
Ответ:
vikyliya
vikyliya
05.03.2021
Плоскости альфа и (ABC) пересекаются в прямой DE. прямая DE не имеет общих точек с прямой АС, т.к. АС по определению паралельности прямой и плоскости не имеет общих точек с плоскостью альфа, которой принадлежит DE (является пересечением). значит, раз две прямые не имеют общих точек и НАХОДЯТСЯ В 1 ПЛОСКОСТИ, то они паралельны. если они паралельны, то при паралельных прямых и одной из сторон треугольника как секущей равны углы, а значит по двум углам подобны треугольники  ABC и DBE. Коэф подобия: АВ:DB=(AD+DB):DB=(3DB/2+DB):DB=5/2 (т.к. DB по понятным причинам не ноль), значит AC=5/2*DE => AC=22,5
4,5(76 оценок)
Ответ:
DaryaKovalkina
DaryaKovalkina
05.03.2021
Можно так.
1) Середина диагонали АС прямоугольника является точкой пересечения диагоналей, а также центром симметриии прямоугольника. Значит точка О делит отрезок РК пополам, тогда в ΔСОР =ΔАОК  по двум сторонам и углу между ними (ОР=ОК, АО=ОС и углы РОС и АОК равны как вертикальные). Отсюда РС=АК, а также РСIIАК, Значит АРСК параллелогамм.
2) S(АРСК)=РС*CD, CD=√(AC²-AD²)=√(169-144)=5, PC=AK=4, S(АРСК)=4*5=20.
3) Проведем РМ II CD, РМ=5, КМ=8-4=4, РК=√(РМ²+КМ²)=√(25+16)=√41, 
4) По теореме косинусов АК²=АО²+ОК²-2АО*ОК*cos(AOK).
АК=4, АО=6,5, ОК=√41/2. 
cos\angle AOK= \frac{AO^2+OK^2-AK^2}{2 AO*OK}= \frac{42,25+ \frac{41}{4}-16 }{2*6,5* \frac{ \sqrt{41}}{2}}= \frac{36,5}{41,6}=0,8774.
\angle AOK=28^ \circ40'
4,4(11 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ