ответ во вложении Объяснение:
Как известно, площадь треугольника можно вычислить в данном случае по формуле
S=AB*h/2, где h - высота, проведенная к АВ. (1)
Можно вычислить и по-другому.
S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2)
Теперь приравняем правые части формул (1) и (2)
AB*h/2=BC*H/2
Умножим обе части на 2, получим
AB*h=BC*H (3)
По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)
16*11=22*Н
Сократим обе части на 11
16=2*Н
Сократим обе части на 2
Н=8.
ответ: Н=8 см- высота, проведенная к стороне ВС
ответ: АК = СК = 5 см
Объяснение:
ВК⊥α, тогда АК и СК - проекции боковых сторон треугольника АВС на плоскость α.
Пусть Н - середина АС. Тогда ВН - медиана равнобедренного треугольника, проведенная к основанию, значит является и высотой,
ВН⊥АС,
КН - проекция ВН на плоскость α, значит КН⊥АС по теореме о трех перпендикулярах, тогда
∠ВНK = 60° - линейный угол двугранного угла между плоскостью АВС и плоскостью α.
ΔАВН: ∠АНВ = 90°, АВ = √73 см, АН = АС/2 = 3 см,
по теореме Пифагора
ВН = √(АВ² - АН²) = √(73 - 9) = √64 = 8 см
ΔВКН: ∠ВКН = 90°,
cos∠BHK = KH / BH
KH = BH · cos∠BHК = 8 · 1/2 = 4 см
ΔАКН: ∠АНК = 90°, по теореме Пифагора
АК = √(КН² + АН²) = √(16 + 9) = √25 = 5 см
Если равны наклонные, проведенные из одной точки, то равны и их проекции:
СК = АК = 5 см