АВС - осевое сечение конуса. Тр-к АВС - равнобедренный. ВО - высота конуса - высота сечения, биссектриса и медина, проведенная из вершины В. Угол АВО равен углу ОВС = а. К - центр описанной около треугольника АВС окружности.КМ - высота и медиана равнобедренного тр-ка ВКС. ВМ= МС =ВК умнож на синус угла а, ВК = радиусу опис окружности. ВС = 2ВМ.Тогда высота конуса ОВ = ВС умножить на косинус угла а. ОВ = двум радиусам умноженным на синус угла а и на косинус угла а = радиус умножить на синус двойного угла а.
Точка середины стороны AB возьмем за N, а точку середины стороны AC возьмем за M. Тогда MN средняя линия треугольника. Если опустить высоту АН, то она будет перпендикуляра BC и MN. Пересечение высоты со средней линией прими за К. Тогда АК = КН поскольку MN средняя линия. На продолжении MN опустим перпендикуляры из точек C и B, а точки пересечения обозначим соответственно за Z и X. Тогда ZXCB прямоугольник у которого противолежащие стороны равны.Поскольку КН перпендикулярно CB, то CZ=KH=BX. Тогда вершины равно удалены от прямой.
решение представлено на фото