1. Здесь образуются два подобных (по трем углам) треугольника (большой и малый). Для них можно записать соотношение:
1,7/4 = х/8+4
откуда
х = 1,7/4 * 12 = 3 * 1,7 = 5,1
ответ: 5,1
2. 0,5 * 4=2 метра
3.Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE.
Эти треугольники подобны, т.к.:
∠C - общий,
∠B и ∠DEC - прямые,
углы A и EDC - равны, так как являются соответственными.
Из подобия этих треугольников следует, что:
AB/DE=BC/EC
BC=(AB*EC)/DE=(9*1)/2=4,5.
В задаче нас интересует отрезок BE, BE=BC-EC=4,5-1=3,5.
ответ: 3,5
Из подобия имеем: CQ/AD=СM/MD=1 (так как СМ=MD - дано).
Итак, CQ=AD. Тогда BQ=BC+CQ. Но BC=(1/3)*AD (дано), а CQ=AD (доказано выше). Следовательно, BQ=(1/3)*AD+AD, отсюда
3BQ=4AD. BQ/AD=4/3.
Треугольники АРD и ВРQ подобны по двум углам (<РВQ=<РDA как накрест лежащие при параллельных BQ и AD и секущей BD,
<ВРQ =<AРD как вертикальные).
Из подобия имеем: ВР/PD=ВQ/AD=4/3. Что и требовалось доказать.
В. Площадь трапеции АВСD Sabcd=(BC+AD)*BH/2=(2/3)AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*PH.
Площадь треугольника ABD равна Sabd=(1/2)*AD*BH.
Площадь треугольника AMD равна Samd=(1/2)*AD*MK.
Но МК=(1/2)*ВН (из подобия треугольников AMD и CMQ). Значит Samd=(1/4)*AD*ВН.
Площадь треугольника AРD равна Saрd=(1/2)*AD*РТ.
Но РТ=(3/7)*ВН (из подобия треугольников AMQ и APD). Значит Saрd=(3/14)*AD*ВН.
Площадь треугольника РМD равна
Spmd=Samd-Sapd=(1/4-3/14)*AD*ВН =(1/28)*AD*ВН
Sbcmp=Sabcd-Sabd-Spmd=(2/3-1/2-1/28)AD*BH = (11/84)*AD*BH.
(2/3)AD*BH=56 (дано). Тогда AD*BH=84.
Sbcmp=(11/84)*84=11.