Менший із кутів, що утворюються при перетині двох прямих на площині, називається кутом між прямими. Дві прямі називаються перпендикулярними, якщо вони перетинаються під прямим кутом. Через точку, що не належить прямій, можна провести пряму, перпендикулярну даній прямій, і тільки одну.
Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
Для начала берешь данный отрезок и находишь его середину с простейших построений. (чертишь 2 окружности радиуса больше половины длинны отрезка. Центрами этих окружностей будут концы отрезка. В итоге эти окружности пересекутся в 2 точках. Через эти 2 точки провожишь прямую. Данная прямая будет серединным перпендикуляром. А серединный перпендикуляр обладает следующим свойством: делит отрезок пополам) Теперь рисуешь данный угол. Берешь циркуль и им отмеряешь половину отрезка (расстояние от конца отрезка до точки пересечения серединного перпендикуляра с отрезком). Затем с циркуля откладываешь эти расстояния на стороны угла (циркуль ставишь в вершину угла и затем строишь окружность с радиусом, равным половине отрезка.) Затем отмечаещь точки пересечения окружности и сторон угла. Это и есть искомые точки
Объяснение:
Менший із кутів, що утворюються при перетині двох прямих на площині, називається кутом між прямими. Дві прямі називаються перпендикулярними, якщо вони перетинаються під прямим кутом. Через точку, що не належить прямій, можна провести пряму, перпендикулярну даній прямій, і тільки одну.