Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
O(2;-1).
Объяснение:
Найдем длины сторон:
|AB| = √((Xb-Xa)² + (Yb-Ya)²) = √((6-(-4))² + (1-3)²) = √104 ед.
|СD| = √((Xd-Xc)² + (Yd-Yc)²) = √((-2-8)² + (-3-(-5))²) = √104 ед.
|BC| = √((Xc-Xb)² + (Yc-Yb)²) = √((8-6)² + (-5-1)²) = √40 ед.
|AD| = √((Xd-Xa)² + (Yd-Ya)²) = √((-2-(-4))² + (-3-3)²) = √40 ед.
Противоположные стороны четырехугольника ABCD попарно равны => четырехугольник ABCD - параллелограмм по признаку.
Что и требовалось доказать.
Диагонали параллелограмма делятся точкой пересечения пополам. Значит достаточно найти координаты середины отрезка АС.
Xo = (Xa+Xc)/2 = (-4+8)/2 = 2.
Yo = (Ya+Yc)/2 = (3-5)/2 = -1.
O(2;-1).