Сторона ромба равна 10 см, острый угол равен 30°. Найдите радиус вписанной в ромб окружности
Стороны ромба равны между собой и являются касательными к вписанной окружности, центром которой является точка пересечения диагоналей ромба. Диаметр этой окружности, проведенный в точки касания, перпендикулярен обеим сторонам ромба (свойство диаметра).
Высота ВН противолежит углу 30°⇒
ВН равна половине гипотенузы. ВН=АВ:2=5 см
КМ⊥ВС и АD; ВН ⊥BC и АD⇒ КМ║ВН и равны, как перпендикуляры между параллельными прямыми. ⇒
d=5 cм, r=2,5 см
----------
Полезно запомнить: Диаметр вписанной в ромб окружности равен его высоте.
Пусть в треугольнике АВС угол С - прямой, АВ - гипотенуза, СМ - медиана к ней, CosА=3/5=0,6.
В прямоугольном треугольнике медиана проведённая к гипотенузе равна её половине.
АВ=2*СМ=2*10=20.
Длина катета АС относится к длине гипотенузы АВ как прилежащего угла CosА=0,6.
АС=АВ*СosA=20*0,6=12.
Второй катет ВС найдём по теореме Пифагора:
В прямоугольном треугольнике радиус вписанной окружности будет равен половине разности между суммой катетов и гипотенузой
r=(АС+ВС-АВ)/2=(12+16-20)/2=8/2=4.
ответ: радиус вписанной окружности равен 4.