М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ася2oo3
Ася2oo3
29.11.2021 08:18 •  Геометрия

Дано adcb-трапеция, de-высота, угол deb=90, dc=6, de=4
найти- s-площадь adcb

👇
Открыть все ответы
Ответ:
Julai1234
Julai1234
29.11.2021
Диагонали ромба делят углы пополам, пересекаются под прямым углом и в точке пересечения делятся пополам. В результате пересечения диагоналей образуются прямоугольные треугольники с гипотенузой равной стороне ромба и катетами равными половине диагоналей. 
В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед.
И самый простой
Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
4,4(74 оценок)
Ответ:
Happyunicorn28
Happyunicorn28
29.11.2021
Вам немного не повезло. Ночью я решил Вашу задачу, уже дописывал (примерно 90 %), но вдруг сайт "глюканул",  выбросил мой ответ и перестал меня "узнавать".
Писать второй раз я уже не стал, и вот, только через 10 часов приступаю снова.
 AC и ВD - диагонали квадрата и равны 18*√(2). Соединим точку S отрезками с вершинами квадрата. Получится правильная четырехугольная пирамида. Плоскость ASC делит пирамиду пополам. В треугольнике ASC углы SAC и SCA равны 60° (по условию). Значит этот треугольник равносторонний и ребра SA и SC (а также и ребра SB и SD) равны 18*√(2). В грани DSC проведем апофему SE. Она разделит треугольник DSC на два прямоугольных треугольника DSE и ESC. По теореме Пифагора SE= √((18*√(2))^2-9^2)=9*√(7). Площадь треугольника DSC равна 18*9*√(7)/2=81*√(7).
Угол между плоскостями определяется углом между перпендикулярами, проведенными к линии пересечения плоскостей, в данном случае к ребру SC. Но, поскольку пирамида правильная, то угол (α) между плоскостями ASC и BSC будет таким же как и между плоскостями  ASC и DSC. Значит угол между плоскостями BSC и DSC будет в 2 раза больше (2*α), но вычислить его проще, поэтому будем вычислять угол (2*α).
Из точек B и D проведем перпендикуляры (BN) и (DN) к ребру SC. Рассмотрим треугольник BND. Он равнобедренный, BN=DN, а  BD=18*√(2).
Ранее мы вычислили, что площадь треугольника DSC равна 81*√(7). Но эту же площадь можно определить как SC*DN/2, отсюда DN=2*81*√(7)/(18*√(2))=9*√(7/2).
Итак, в треугольнике  BND BN=DN=9*√(7/2), BD=18*√(2)=9*√(8). По теореме косинусов получаем:
(9*√(7/2))^2+(9*√(7/2))^2-2*(9*√(7/2))*(9*√(7/2))cos(2*α)=(9*√(8))^2
81*7-81*7*cos(2*α)=81*8, cos(2*α)=(-1/7). Тогда sin(α)=√((1+1/7)/2)=√(4/7).
α=arcsin(√(4/7)).
Вот такой у меня получился ответ. Он конечно "некрасивый", но...
4,8(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ