Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
Виды треугольников :
по размерам сторон :
разносторонние (треугольник, все стороны которого имеют разную длину.)
равнобедренные (это треугольник, у которого две стороны равны.)
равносторонние (это треугольник, у которого все три стороны равны.)
по размерам углов:
прямоугольные - это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).
остроугольные- это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º)
тупоугольные - это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).
Средняя линия треугольника-это отрезок,соединяющий серидины сторон треугольника.