Паралельно оси цилиндрапроведено перериз який видтинае вид його основдуги по 90 градусив перериз знаходиться на видстани 6 дмвид оси цилиндра знайти обьем цилиндра якщо площа переризу доривнюе 120 дм
Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
S = 14*8,1*(1/2) = 56,7.
Ну хорошо, поступила без синусов. Тогда так. Из вершины диагонали, которая НЕ общая с заданной стороной, опускаем перпендикуляр на эту сторону. Это - высота параллелограмма (и того треугольника, про который я говорил - тоже, но это не важно). У нас получился прямоугольный треугольник, у которого острый угол 30 градусов, а высота - противолежащий катет (углу в 30 градусов). Поэтому высота равна половине гипотенузы этого треугольника, то есть - в данном случае - диагонали параллелограмма. То есть высота параллелограмма равна 14/2 = 7.
Диагонали ромба взаимно перпендикулярны. AOD - прямоугольный треугольник. ОР - высота из прямого угла в треугольнике AOD. ОР=√(АР*РD)=√(6√3*2√3)=6см. По Пифагору АО=√(АР²+ОР²)=√(108+36)=12см. R=AJ=JO=JP = АО/2 = 6см. Площадь круга Sк=π*R²=36π. В прямоугольном треугольнике АРО катет ОР равен половине гипотенузы АО, значит <PAO=30°, <РАК=60° (так как АО - биссектриса <PAK) => дуга РОК=120°. <PJK=120°(центральный угол, опирающийся на дугу РОК). РН=0,5*АР=3√3см (катет против угла 30°). AH=√(АР²-РH²)=√(108-27)=9см. Площадь треугольника АКР равна Sapk=AH*PH=9*3√3=27√3см². Площадь сегмента КОР равна Skop=(R²/2)*(π*α/180 -Sinα) - формула. В нашем случае α=<PKJ =120°. Skop=(36/2)*(π*120/180 -√3/2) Skop=(12π-9√3)см². Искомая площадь равна S=Sк-Sapk-Skop = 36π-27√3-12π+9√3 = (24π-18√3)см².
Диагональ делит параллелограмм на 2 равных треугольника. Считаем площадь одного, умножаем на 2 и - вуаля! (площадь треугольника считаем по формуле S = a*b*sin(C)/2). Окончательно
S = 14*8,1*(1/2) = 56,7.
Ну хорошо, поступила без синусов. Тогда так. Из вершины диагонали, которая НЕ общая с заданной стороной, опускаем перпендикуляр на эту сторону. Это - высота параллелограмма (и того треугольника, про который я говорил - тоже, но это не важно). У нас получился прямоугольный треугольник, у которого острый угол 30 градусов, а высота - противолежащий катет (углу в 30 градусов). Поэтому высота равна половине гипотенузы этого треугольника, то есть - в данном случае - диагонали параллелограмма. То есть высота параллелограмма равна 14/2 = 7.
S = 7*8,1 = ... ну, вы уже в курсе :