Угол между плоскостью основания и противолежащей вершиной другого основания - это угол ОКС. Поскольку все ребра перпендикулярны основаниям, то треугольник КОС - прямоугольный с прямым углом С. И поскольку угол ОКС = 30 градусов, то катет ОС равен половине гипотенузы ОК как катет, что лежит против угла 30 градусов. ОК = 2СО = 6*2 = 12 см. Из теоремы Пифагора: CK^2 = OK^2 - OC^2, CK^2 = 12^2 - 6^2 = 144 - 36 = 108, CK = 6 корней из 6. Из правильного треугольника АВС: высота СК = 6 корней из 3, которая является также и медианой, поэтому АК = КВ = СВ/2. Из прямоугольного треугольника СКВ: угол СВК = 60 градусов как угол правильного треугольника. По теореме синусов: СК/sin(CBK) = CB/sin(CKB), CB = 12. Площадь треугольника равна 36 корней из 3 см^2. Объем призмы равен площади основания, умноженного на высоту: V = So*H = S(ABC)*OC = 108 корней из 3 см^3.
рішення: 1) В р / б трапеції кути при підставах рівні, значить якщо позначимо уг АДВ = уг СДВ = х градусів, тоді кут ДАВ = х * 2) АД || BC і ВД - січна, значить уг АДВ = уг ДВС = х * 3) В трапеції кути прилеглі до однієї бічній стороні в сумі 180 *, отримуємо: 2х + х + 90 = 180 3х = 90 х = 30 градусів, повертаємося до позначень, отримуємо: В трапеції АВСД уг А = уг Д = 60 *, уг В = уг С = 180-60 = 120 *. Відповідь: 60;60;120;120
Объяснение:
ВСЕ четыре стороны равны,значит что бы найти сторону надо
Р:4 = 24:4=6см
высота = 6:2=3см
S=a*H = 6*3=18 см^2