1)ВК + КН = ВН
ВН = 6,5 см + 2,5 см = 9 см
2)Δ АКН ~ ΔВКС (подобны)
т.к. ∠ НВС = ∠АНВ = 90° оба прямоугольные
∠АКН = ∠ВКС - как вертикальные
3) Найдём коэффициент подобия k
k= ВК/КН = 6,5/2,5 = 2,6
4) С коэффициента подобия k = 2,6 выразим длины сходственных сторон АН и ВС.
АН - х
ВС= 2,6х
АВ = ВС - как стороны ромба
АВ = 2,6х
5) Из прямоугольного Δ АВН с теоремы Пифагора получим уравнение:
АВ² = ВН² + АН²
(2,6х)² = 9² + х²
6,76х² = 81 + х²
6,76х² - х² = 81
5,76х² = 81
х² = 81 : 5,76
х² =14,0625
х = √14,0625
х = 3,75 см
6) Находим сторону ромба АВ:
АВ = 2,6 · 3,75 = 9,75 см
7) Наконец находим площадь ромба
S = ah
S = 9,75 · 9 = 87,75 cм²
ответ: S = 87,75 см²
Объяснение:
1) a=3i-4j ,умножим обе части равенства на (-3) , -3а=-9i+12j , -3а{-9 ; 12}.
2) b=3i+5j ,умножим обе части равенства на (-4) , -4b=-12i-20j , -
4в{-12 ; -20}.
3) m=-3a-4b, координаты m{-9-12 ; 12-20}, m{-21 ; -8},
4) Длина |m|=√ ( (-21)²+(-8)²)=√ (441+64)=√505