1) найдём гипотенузу по теореме Пифагора: с=√(24^2+18^2)=√(576+324)=√900= 30; 2) биссектриса проведена к катету, равному 18 ( против меньшей стороны лежит меньший угол); 3) биссектриса делит катет на две части х и у; х+у=18 (х - ближе к прямому углу); 4) биссектриса делит катет на пропорциональные части: 24:х=30:у 30х=24у 5х=4у у=5х/4 (1) х+у=18 (2) подставим из (1) в (2): 5х/4 + х=18 5х+4х=18*4 9х=18*4 х=2*4=8 5) по теореме Пифагора найдём биссектрису (L): L=√(24^2+8^2)=√(576+64)=√640=√64*10=8√10 ответ: 8√10
ABC равнобедр. треугольник, АС основание=32см, АВ и ВС сотроны, равные 20см) Расстояние от вершины М до плоскости обозначим МО) А расстояние от М до стороны треугольника обозначим МК МК=5) Тогда мы видим прямоугольный треугольник, МО перпендикуляр, тогда найдем МО по теореме Пифагора МО=√МК²-ОК² ОК-радиус вписанной окружности равнобедр. треуг-ка ОК=√(р-а)²(р-в)/√р р-полупериметр, а-боковая сторона равная 20, в -основание равное 32) р=Р/2=2а+в/2=2*20+32/2=36см ОК=√(36-20)²(36-32)/√36=8/6=4/3см МО=√25-16/9=√209/√9=√209/3см