Трикутник abc вершин a(-2; 1) b (1; -3) c(3; 1), проведена середина лінія в c1 || bc.знайдіть довжину b1c1, скласти рівняння прямої, що містить цю середню лінію.
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Уравнение прямой бисснутрисы первой четверти будет иметь вид у = x. Уравнение окружности имеет вид (х - x1)² (y - y1)² = r², где x1, y1 - координаты центра, r - радиус окружности. Раз центр будет лежать на прямой y = x, а точка с координатами (2; 5) будет лежать на окружности, то координаты центра можно найти, подставив эти координаты в уравнение: (х - 2)² + (х - 5)² = 5 х² - 4х + 4 + х² - 10х + 25 - 5 = 0 2х² - 14х + 24 = 0 х² - 7х + 12 = 0 х1 + х2 = 7 х1•х2 = 12
х1 = 3 х2 = 4 Тогда уравнение окружности будет иметь вид (х - 3)² + (у - 4)² = 5 или (х - 4)² + (х - 3)² = 5.
Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы
Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов)
А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным.
Утверждение доказано.