Рассмотрим все случаи, с учетом неравенства треугольников. т.е. всякая стороны должна быть меньше суммы двух других сторон . Тогда можно построить треугольник. Из четырех чисел выбрать три существует всего неравенство нарушается, т.к. 2=3=5, и все вершины лежат на одной прямой. Нельзя построить.
2) 2;3;4, проверяем 3 меньше 2+4, 2 меньше 3+4, 4 меньше 2+3 Можно построить треугольник.
3)3;4;5 проверяем 3 меньше 4+5, 4 меньше 3+5, 5 меньше 3+4 треугольник можно построить.
4)2;4;5 т.к. 2 меньше 4+5, 4 меньше 2+5, 5 меньше 2+6, то такое треугольник можно построить.
ответ три
В них
1.катет ED равен катету DF
2. гипотенуза AD равна гипотенузе DC
значит по теореме Пифагора равны между собой и два других катета AE и FC
Значит треугольники AED и DFC равны между собой
по двум катетам и углу между ними ,а из этого следует, что угол EAD равен FCD (из условия равенства треугольников)
В рассматриваемом треугольнике ABC угол BAC является углом EAD и значит равен углам BCA и FCD ,а углы BAC и BCA есть ничто иное как углы при основании треугольника ABC и они равны между собой
Два угла треугольника равны треугольник ABC является равнобедренным
По признаку: Два угла треугольника равны треугольник ABC является