М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Четырехугольник bcde вписан в окружность. расстояние между точками e и с равно 25, между d и c—7, между d и e — 24.
а) найдите косинус cbd
б) найдите bc, если синус угла bdc =1/5

👇
Ответ:
назым24
назым24
08.08.2022

а) CosCBD = 0,96.

б) ВС = 5 ед.

Объяснение:

Треугольник CDE - прямоугольный, так как СЕ² = СD² + DE².

(25² = 24² + 7² или 625 = 576 +49 =>  625=625).  =>

СЕ - диаметр окружности.

а) Cos(∠CED) = ED/CE = 24/25 = 0,96.

∠CED = ∠CBD как вписанные, опирающиеся на одну дугу СD.

Значит CosCBD = 0,96.

б) По теореме синусов в треугольнике CBD имеем:

CD/SinB = BC/SinD. SinB = √(1-Cos²B) = √(1-0,96²) = 0,28. (косинус угла В нашли в пункте а).  =>

ВС = CD·SinD/SinB = 7·(1/5)·0,28 = 5 ед.


Четырехугольник bcde вписан в окружность. расстояние между точками e и с равно 25, между d и c—7, ме
4,5(42 оценок)
Открыть все ответы
Ответ:
kolobok2000
kolobok2000
08.08.2022
Геометрия алгебре Лучше один раз увидеть, чем сто раз услышать. Пословица. Анри Пуанкаре сказал, что математика — это искусство называть разные вещи одина- ковыми именами. Осмелимся добавить: а одинаковые вещи — разными именами. То есть один и тот же объект можно описывать на разных языках, видеть разными глазами. При этом непонятное ранее утверждение может стать очевидным, а к сложной задаче может отыскаться лёгкое решение. На школьном уровне эта идея обычно реализуется как перевод на язык алгебры арифме- тических задач (текстовые задачи решают с уравнений) и геометрических задач (координатный и векторный методы). Такой перевод позволяет алгоритмизировать реше- ние задач. Заметим, что алгоритмизация не всегда полезна: не нужно ничего изобретать, решение идёт по накатанной схеме. “Решать с уравнений задачу, допускающую простое арифметическое решение, безнравственно.” [1, с. 46] Менее известны другие случаи, когда арифметические и алгебраические задачи удобно решать на геометрическом языке. Таким примерам и посвящена эта статья. Доказать значит сделать очевидным Ключевые факты полезно формулировать на разных языках, чтобы каждый ученик усваивал их на свойственном ему языке. Для многих вовремя показанная картинка может раз и навсегда навести ясность и от типичных ошибок. 1. Переместительный закон сложения для положительных чисел можно пояснять так: поезд проехал a км от Москвы до Твери и b км от Твери до Петербурга. На обратном пути он проехал те же расстояния в обратном порядке, и общий путь был тот же самый. Значит, a + b = b + a. Переместительный закон сложения для целых чисел хорошо пояснять с дви- жения лифта. Например, (+3) + (−5) означает, что лифт поехал сначала на 3 этажа вверх, а потом на 5 вниз. А (−5) + (+3) означает, что лифт сначала поехал на 5 этажей вниз, а потом на 3 вверх. Ясно, что в итоге он переместился на одно и то же число этажей в одну и ту же сторону3. Тот же Пуанкаре говорил, что научиться складывать дроби можно двумя разрезая яблоки и . . . разрезая пироги. В статье и на доске проще резать прямоугольники (“шоколадки”), но суть будет та жеСпросите пятиклассника, чему равен квадрат суммы — и он наверняка ответит “сумме квадратов”. Переубедить его проще всего с картинки 6: считаем площадь боль- шого квадрата двумя Говорят, когда Руссо учился в школе, его убедило только такое доказательство. Можно придумать картинки для доказательства разложения квад- рата суммы трёх слагаемых, для разности квадратов и даже для куба суммы [2]. Правда, последнее является скорее тренировкой пространственного воображения, но это тоже по- лезно. 5. Формула для производной произведения двух функций, как и формула суммы квад- ратов, не принадлежит к числу интуитивно ясных: хочется по аналогии с производнойсуммы сказать “равна произведению производных”. В эту ловушку попался сначала да- же. . . Лейбниц, один из создателей дифференциального исчисления.
4,6(79 оценок)
Ответ:
Svetarozen
Svetarozen
08.08.2022

А₁В₁С₁Д₁ -ромб, площадь которого равна А₁С₁*В₁Д₁/2=6*12/2=36/cм²/. Зная половины диагоналей 6/2 и 12/2, можно найти сторону, т.к. диагонали пересекаются под прямым углом. значит. сторона равна √(3²+6²)=

√(9+36)=3√5, ∠СВ₁С₁=30°. т.к. В₁С₁- проекция В₁С на плоскость основания. Тогда высота призмы СС₁=В₁С₁**tg30°=

3√5*(1/√3)=√15

Объем равен произведению площади на высоту. т.е. 36*√15=/см³/

Площадь полной поверхности состоит из двух площадей основания, т.е. 2*36=72, и боковой поверхности 4*В₁С₁*СС₁=4*(3√5)*(√15)=60√3

=4*3*3*5√3=90√3

площадь полной поверхности равна (72+60√3) см²


Сделайте на листочке и скиньте фотку , так будет понятнее​
4,8(5 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия

MOGZ ответил

Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ