Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
BC=X AB=2X P=24см Р=(a+b)*2 составляем уравнение 1) ( х+2х)*2=24 3х*2=24 6х=24 х=24:6 х=4 (см) - длина стороны ВС 2) 4*2=8(см) - длина стороны АВ ответ: 4 см и 8 см
А что в 7 номере надо доказать?Там вроде бы просто найти периметр.