Тік төртбұрыштың ұзындығы 6 см және ені 3 см .оны екі бірдей тік төртбұрышты үшбұрышқа бөл.әрбір тік төртбұрышты үшбұрыштың ауданын тап . неге бірдей нәтиже шыққанын түсіндір
АС - основание. Проводим высоты АН2, СН3 и ВН1 соответственно из углов А, С и В.
Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2
Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3
Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4
Тогда ВН2 = 18-4 = 14
Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9
Определение: "Правильная пирамида — это пирамида, основанием которой является правильный многоугольник, а вершина пирамиды проецируется в центр этого многоугольника. Высота боковой грани, проведенная из вершины правильной пирамиды, называется апофемой, боковые ребра равны, боковые грани равны (все являются равнобедренными треугольниками)". Следовательно, углы наклона боковых ребер к основанию равны - это углы между ребром и высотой основания (правильного треугольника). Углы углы наклона боковых граней равны - это углы между апофемой и высотой основания. Высота правильного треугольника по формуле равна h=(√3/2)*a. Эта высота является и медианой, значит она делится точкой О (центром основания) в отношении 2:1, считая от вершины. ОС=(2/3)*h=(√3/3)*a. OH=(1/3)*h=(√3/6)*a. Тогда значение угла наклона боковых ребер к основанию найдем из прямоугольного треугольника AOS: tgα=OS/OC = 2a/(√3*a/3)=2√3 ≈3,46. α=arctg(3,46). α ≈73,9° Значение угла наклона боковых граней к основанию найдем из прямоугольного треугольника НOS: tgβ=OS/OH = 2a/(√3*a/6)=4√3 ≈6,93. β=arctg(6,93). β ≈81,8°.
Объяснение:
АС - основание. Проводим высоты АН2, СН3 и ВН1 соответственно из углов А, С и В.
Высота ВН1, проведённая к основанию является медианой и биссектриссой угла В, тогда СН1 = 12/6 =2
Рассмотрим треугольник ВСН1: cos C = СН1 / ВС = 6/18 =1/3
Расмотрим треугольник АСН2: cos C = CH2 / AC, отсюда СН2 = АС*cos C = 12 * 1/3 = 4
Тогда ВН2 = 18-4 = 14
Согласно теореме: в любом треугольнике отрезок, соединяющий основания двух высот треугольника, отсекает треугольник подобный данному, т.е. треугольник ВН2Н3 подобен треугольнику АВС. к = ВН2/ВС = 14/18 = 7/9
Н3Н2 = 12*7/9 = 28/3 = 9
ответ;9