См. Объяснение.
Объяснение:
1) При пересечении AB и CD образуются два равных треугольника:
ΔАОС = ΔDОB, так как две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника (первый признак равенства треугольников), а именно:
АО = ОВ - согласно условию;
DO = ОС - согласно условию;
∠АОС = ∠DОB - как углы вертикальные.
2) В равных треугольниках против равных углов лежат равные стороны:
АС и BD лежат против равных углов ∠АОС и ∠DОB, следовательно:
АС=BD, - что и требовалось доказать.
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.