ответ: Задача 3
Угол 3 = 180-(22+45)=113 градусов
Объяснение:
тк в треугольнике сумма всех углов = 180 градусов
угол 1 при прямой н равен углу треугольника при прямой м как соответствующие углы. Угол 2 равен углу треугольника при прямой м как вертикальные
Задача 4
угол СМА =180-16*2=148
тк МД - бисектриса и делит угол пополам. А сумма смежных углов 180 градусов
Задача 5
Угол ОМК= углу ОКМ тк треугольник КОМ равнобедренный (ОК и ОМ радиусы) углы при основании равны. Радиус проведенный в точку касания - перпендикулярен касательной значит угол ОКМ=90-39=51.
ответ ОМК=51 градус
4 и 4
Объяснение:
По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник. Обозначим его вершины К, L, M и N.
Биссектрисы параллелограмма, являясь секущими, отсекают от него равнобедренные треугольники ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>
АВ=BQ=AT=CD=CR=DS=8 Тогда ВR=12-CR=4. Аналогично длина отрезков QC,, DT,, AS равна 4.
Отрезки QR и TS равны 12-2•4=4.
По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.
В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND
Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD, а BR║TD как лежащие на параллельных сторонах ABCD.
Из доказанного выше BL=RN. ⇒ BL=RN. ⇒
Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4
LN - диагональ прямоугольника KLMN. Диагонали прямоугольника равны.
КМ=LN=4 (ед. длины)
Объяснение:
в р/б треугольнике высота является медианой(по свойству), т.к. ДО- высота и медиана=> треугольник
ВДР- равнобедренный=> угол В=углу Р(по признаку р/б треугольника)