Синус острого угла прямоугольного треугольника равен отношению противолежащего катета к гипотенузе.
Косинус острого угла прямоугольного треугольника равен отношению прилежащего катета к гипотенузе.
Тангенс острого угла прямоугольного треугольника равен отношению противолежащего катета к прилежащему.
а) По теореме Пифагора:
AC = √(AB² - BC²) = √(17² - 8²) = √(289 - 64) = √225 = 15
sin∠A = BC / AB = 8/17 sin∠B = AC / AB = 15/17
cos∠A = AC / AB = 15/17 cos∠B = BC / AB = 8/17
tg∠A = BC / AC = 8/15 tg∠B = AC / BC = 15/8
б) По теореме Пифагора:
АВ = √(BC² + AC²) = √(21² + 20²) = √(441 + 400) = √841 = 29
sin∠A = BC / AB = 21/29 sin∠B = AC / AB = 20/29
cos∠A = AC / AB = 20/29 cos∠B = BC / AB = 21/29
tg∠A = BC / AC = 21/20 tg∠B = AC / BC = 20/21
в) По теореме Пифагора:
АВ = √(BC² + AC²) = √(1² + 2²) = √(1 + 4) = √5
sin∠A = BC / AB = 1/√5 sin∠B = AC / AB = 2/√5
cos∠A = AC / AB = 2/√5 cos∠B = BC / AB = 1/√5
tg∠A = BC / AC = 1/2 tg∠B = AC / BC = 2
г) По теореме Пифагора:
ВС = √(АВ² - AC²) = √(25² - 24²) = √(625 - 576) = √49 = 7
sin∠A = BC / AB = 7/25 sin∠B = AC / AB = 24/25
cos∠A = AC / AB = 24/25 cos∠B = BC / AB = 7/25
tg∠A = BC / AC = 7/24 tg∠B = AC / BC = 24/7
Если в четырехугольник можно вписать окружность, то суммы противоположных сторон равны. (Если не в курсе, откуда это берется - отрезки касательных из одной точки до точки касания окружности равны, дальше просто все складывается :))
Поэтому в равнобедренной трапеции боковая сторона будет (54 + 24)/2 = 39.
Высота найдется из треугольника, образованного боковой стороной и частью основания - опускаем препендикуляр из вершины малого на большое основание.
Катеты этого треугольника Н и (54 - 24)/2 = 15, гипотенуза 39. Ну, дальше по Теореме Пифагора :))
Н^2 = 39^2 - 15^2 = 36^2;
H = 36.
Кто запоминает Пифагоровы тройки, сразу бы дал ответ - стороны этого треугольника - утроенные числа (5 12 13).