2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д
Чертеж не могу привести, потому уточняю: верхнее основание ВС. нижнее АD. Если из вершин С и В к основанию АD провести две высоты, а точки пересечения с нижним основанием обозначить М и Е, то образуются два равных прямоугольных Δ - ВМА и СЕD. Признак равенства - Гипотенуза и прилежащий к ней угол одного прямоугольного Δ равен гипотенузе и прилежащему к ней углу другого Δ, то такие Δ равны. У нас боковые стороны трапеции равны по условию, а это гипотенузы прямоугольных треугольников и острые углы при основании равны (свойство равнобедренной трапеции). Значит, вторые катеты, а это высоты трапеции тоже равны: ВМ=СЕ. Если Δ равные, то и катеты АМ=ЕD. По условию ED=10, значит и АМ=10. Отсюда МЕ=11-10=1 МЕ=ВС (прямоугольник
2) ответ: Пусть прямые а и d параллельны прямой с. Можно воспользваться доказательством от противного. Предположим, что верно утверждение, противоположное утверждению теоремы, т.е. допустим, что прямые а и dне парелльны, а, значит, перезекаются в некторой точке о. Тогда через точку о проходят 2 прямые а и d, параллельные прямой с, чтио протьиворечит аксиоме параллельных прямых. Таким образо, наше предположение неверно, а, следвательно, прямые а и d параллельны. 5) Пусть прі пересеченіі прямых а і д секуўей АВ внутреніе накрест лежаўіе углы 1 і 2 раны, Докажем, что а пораллельна д. Еслі угол 1= углу 2= 90, то а перпендікулярна АВ и д перепендикулярна АВ, значит с силу теоремы 1 следует, что а параллельна д, Если угол 1= углу 2 и не равен 90, то из середины О трезка АВ проведён отрезок оф перпендикулярен а. На прямой д отложим отрезок ВФ1= АФ и проведём отрезок ОФ!. Заметим, что треугольник офа=треугольнику ОФ1В по двум сторонам и углу между ними
Так как угол 3= равен углу 4, а точки А,В и лежат на1 прямой, т точки Ф1, Ф и Отакже лежат на 1 прямой
Из равенства угол5=углу 6следует, что угол 6=90, получим. что а перпендикулярна ФФ1 и д перпендикулярна ФФ1, а параллельна д