А) Периметр треугольника AMN равен АМ+AN+MN. Центр вписанной окружности О лежит на пересечении биссектрис внутренних углов треугольника АВС. Следовательно, треугольник ОМВ равнобедренный, так как <MOB=<OBC (как накрест лежащие при параллельных прямых MN и ВС и секущей ОВ), а <MBO=<OBC (так как ОВ - биссектриса угла В треугольника АВС). Отсюда МВ=МО. Точно так же в треугольнике NOC имеем ON=NC. MN = MO+ON или MN=MB+NC. AB=AM+MB, AC=AN+NC. Тогда периметр треугольника AMN равен АМ+AN+NO+OM = АМ+AN+NC+MB = АВ+АС, что и требовалось доказать.
б) Из прямоугольного треугольника АОР (радиус в точку касания перпендикулярен касательной) имеем: АР=√(AO²-OP²)=√(16r²-r²) = r√15. Тогда по свойству: "Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 = p-c", где с- сторона, лежащая против угла С, имеем: АВ+АС-ВС = 2r√15 (1). С другой стороны по формуле площади треугольника имеем: Sabc=p*r, где р - полупериметр треугольника АВС. Отсюда r=S/p = 2√15/(AB+AC+BC). (2) Подставляем (2) в (1): АВ+АС-ВС = 2*(2√15/(AB+AC+BC))*√15. ВС=2, тогда АВ+АС-2 = 2*(2√15/(AB+AC+2))*√15. Или (АВ+АС-2 )*(AB+AC+2)=4*15. Или (АВ+АС)²-4=4*15, отсюда (АВ+АС)=√(4(1+15))=8.Но выше мы доказали, что АВ+АС - это периметр треугольника AMN. ответ: Pamn=8.
Для краткости записи AD = a; BC = b; CD = d; и пусть x = a/b; Сразу ясно, что AC = AD = a; и CK перпендикулярно AK; Площадь треугольника ACD равна одновременно 6*d/2 и 4*a/2; то есть 3*d = 2*a; d = 2*a/3; CK = d/2 = a/3; Если провести из точки C перпендикуляр CF на AD, то треугольник CFD подобен треугольнику AKD (у этих прямоугольных треугольников общий угол) Ясно, что DF = a - b; и получается DK/AK = FD/CF; CF = AB = 4; (a/3)/6 = (a - b)/4; (умножаем на 4 и делим на b) 2*x/9 = x - 1; x = 9/7; Проверяйте, а то я уже сплю :))
MN и ВС и секущей ОВ), а <MBO=<OBC (так как ОВ - биссектриса угла В треугольника АВС). Отсюда МВ=МО. Точно так же в треугольнике NOC имеем ON=NC. MN = MO+ON или MN=MB+NC. AB=AM+MB, AC=AN+NC. Тогда периметр треугольника AMN равен
АМ+AN+NO+OM = АМ+AN+NC+MB = АВ+АС, что и требовалось доказать.
б) Из прямоугольного треугольника АОР (радиус в точку касания перпендикулярен касательной) имеем: АР=√(AO²-OP²)=√(16r²-r²) = r√15. Тогда по свойству: "Расстояние от вершины С треугольника до точки, в которой вписанная окружность касается стороны, равно d=(a+b-c)/2 = p-c", где с- сторона, лежащая против угла С, имеем: АВ+АС-ВС = 2r√15 (1).
С другой стороны по формуле площади треугольника имеем: Sabc=p*r, где р - полупериметр треугольника АВС. Отсюда r=S/p = 2√15/(AB+AC+BC). (2)
Подставляем (2) в (1): АВ+АС-ВС = 2*(2√15/(AB+AC+BC))*√15. ВС=2, тогда
АВ+АС-2 = 2*(2√15/(AB+AC+2))*√15. Или (АВ+АС-2 )*(AB+AC+2)=4*15. Или (АВ+АС)²-4=4*15, отсюда
(АВ+АС)=√(4(1+15))=8.Но выше мы доказали, что АВ+АС - это периметр треугольника AMN.
ответ: Pamn=8.