Обозначим искомый угол за х, угол между диагоналями напротив большей стороны за у. По условию х=у-70. Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника. Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у. Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
1. Ну так как Р - середина, то ЕР=РF и МР=РN. Т. к. углы MPF и EPN вертикальны, они равны. А если EP=PF, MP=PN, и угол MPF равен углу EPN, то по 1-ому признаку равенства треугольников треугольник ENP и треугольник MPF равны, значит все их стороны и углы равны, тоесть и угол PMF равен углу PNE, а если так, то при секущей MN эти накрест-лежащие углы равны, значит по первому признаку EN II MF. 2. Только слушай УГОЛ BAC НЕ МОЖЕТ БЫТЬ 720 ГРАДУСОВ, Я ПОСТАВЛЮ В НЕГО НАВЕРНОЕ 120 ГРАДУСОВ. Т. к. AD - биссектриса следовательно угол BAD равен углу DAF что и равно 120:2=60 градусов каждый. Т. к. АВ II FD то по 2-ому свойству параллельных прямых BAF+AFD=180 градусов, значит угол AFD равен 180-60-60=60 градусов. Н уи т. к. сумма всех углов треугольника равна 180-ти градусам, то угол ADF равен 180-60-60=60 градусов.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°