Дано:
Прямоугольный треугольник АВС;
Угол С - 90 градусов;
АС = 15 см;
ВС = 8 см;
Найдем: sin A, cos A, tg A, sin B, cos B, tg B.
В треугольнике АВС, угол С - 90 градусов.
АВ - гипотенуза;
АС, ВС - гипотенуза.
По формуле Пифагора:
АВ^2 = AC^2 + BC^2;
Найдем АВ:
АВ = √(АС^2 + ВС^2) = √((15 см)^2 + (8 см)^2) = √(225 см^2 + 64 см^2) = √(289 см^2) = 17 см.
Найдем углы:
sin A = АС/АВ = 15/17;
cos A = ВС/АВ = 8/17;
tg A = AC/BC = 15/8;
sin B = BC/AB = 8/17;
cos B = AC/AB = 15/17;
tg B = BC/AC = 8/17
Объяснение:
Рассмотрим треугольник АВЕ:
Угол АЕВ=90 градусов, Гипотенуза АВ=32 см, Катет АЕ=16 см (по условию задачи)
По теореме Пифагора найдем второй катет (высоту):
ВЕ= √(АВ^2-АЕ^2)= √(32^2-16^2)= √(1024-256)= √768 см.
Теперь рассмотрим треугольник BДE:
ДЕ=АД-АЕ=40-16=24 см. ВЕ=√768 см. Угол ВЕД=90 градусов
По теореме Пифагора найдем ВД:
ВД=√(ВЕ^2+ВД^2)= √((√768)^2+24^2))= √(768+576)= √1344=8√21 см или приблизительно 36,66 см.
ответ: расстояние между вершинами тупых углов равно 8√21 см