Треугольника с такими длинами сторон не существует. Основные св-ва треугольника: 1. Против большей стороны лежит большой угол и наоборот. 2. Против разных сторон лежат равные углы и наоборот. В частности, все углы в равностороннем треугольнике равны. 3. Сумма углов треугольника равна 180гр Из двух последних свойств следует, что каждый угол в равностроннем треугольнике равен 60гр. 4. Продолжая одну из сторон треугольника, получаем внешний угол BCD. Внешний угол трегольника равен сумме внутренних углов, не смежных с ним: BCD=A+B 5. Любая сторона треугольника меньше суммы двух других сторон и больше разности. а<b+c,a>b-c, b<a+c, b>a-c,c<a+b, c>a-b.
Площадь формулы сектора выводится просто. пусть сектор составляет альфа градусов, тогда разбивая его на альфа равных секторов мы получим альфа секторов с углом один градус 360 таких секторов бы дали полную окружность, значит площадь одноградусного сектора равна 1/360 части площади окружности, площадь сектора с углом альфа градусов в альфа раз больше, поэтому равна альфа / 360 * площадь окружности. площадь окружности пи * r^2 окончательно получаем площадь сектора (альфа*пи*r^2)/360 если надо формулу площади сектора где альфа в радианах, то пользуемся тем, что 360 градусов это 2 пи радиан, заменяем 360 в знаменателе на 2 пи и получаем (альфа*пи*r^2)/(2пи) = (альфа*r^2)/2
Основные св-ва треугольника:
1. Против большей стороны лежит большой угол и наоборот.
2. Против разных сторон лежат равные углы и наоборот. В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180гр
Из двух последних свойств следует, что каждый угол в равностроннем треугольнике равен 60гр.
4. Продолжая одну из сторон треугольника, получаем внешний угол BCD. Внешний угол трегольника равен сумме внутренних углов, не смежных с ним: BCD=A+B
5. Любая сторона треугольника меньше суммы двух других сторон и больше разности. а<b+c,a>b-c, b<a+c, b>a-c,c<a+b, c>a-b.