Решение
Проведем МК - апофема
по теореме Пифагора Mk=√(MA²-(AB/2)²)=√(12²-3√2²)=√128=6√2 см
а) Sбок=1/2Pa=1/2*4*6√2*8√2=192 см²
Найдем высоту пирамиды MO: MO=√(MK²-(AB/2))=√(8√2²-3√2²)=√110 см
б) V=1/3SH=1/3*(6√2)²*√110=24√110 см³
в) угол наклона боковой грани к плоскости основания cosMKO=KO/MK=3√2/8√2=3/8
г) угол между боковым ребром и плоскостью основания MAO: cosMAO=OA/AM=6/12=1/2
MAO=60 градусов
д) скалярное произведение векторов (АВ+АД)АМ=AC*AM
=|AC|*|AM|cosMAO=12*12*1/2=72 см²
е)радиус описанной сферы равен AO1=O1C
рассмотрим треугольник АМС - равносторонний: радиус описанной окружности r=12*√3/3=4√3
Тогда площадь сферы: S=4πr²=4π*(4√3)²=192π см²
Пусть треугольник АВС. Высота ВК медиана ВМ. Т.к. углы АВК=углу КВМ , то ВК не только высота , но и биссектриса . Значит треугольник АВМ равнобедренный АВ=ВМ КВ будет и медианой , значит АК=КМ. Но по условию ВМ медиана, значит АМ=МС . Тогда МС=2 КМ. Рассмотрим треугольник КВС. В нём ВМ биссектриса по условию, т.к. по условию три угла равны АВК=КВМ=МВС.
Биссектриса внутреннего угла делит противоположну сторону на отрезки, пропорциональные прилежащим сторонам ВК:ВС=КМ:МС= 1:2. Тогда ВС в 2 раза больше ВК. А в прямоугольном треугольнике с острым углом в 30 градусов гипотенуза в 2 раза больше катета, противолежащего этому углу. Тогда угол ВСА=30 градусов. Угол КВС =60 гр. Тогда угол АВС состоит из трёх равных углов и каждый по 30 гр. Угол АВС=90гр. Угол ВАС=60 гр.
Объяснение:
1 случай. Пусть даны длины двух катетов: а=6 см, b=9 cм. Тогда по т.Пифагора гипотенуза равна с=√(a²+b²)=√(6²+9²)=√(36+81)=√117 ~ 11 см2 случай. Пусть даны длины катета а=6 см и гипотенузы с=9 см. Тогда по т.Пифагора второй катет равен b=√(9²-6²)=√(81-36)=√45 ~ 7 см