В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Треугольник равнобедренный. Боковая сторона равна 10, основание равно 12. Высоту найдем из прямоугольного треугольника, где гипотенуза - боковая сторона, а один из катетов - половина основания треугольника. Тогда по Пифагору: h=√(10²-6²)=8см. Площадь треугольника равна S=(1/2)a*h, где а - сторона треугольника, а h - высота, проведенная к этой стороне. S=(1/2)12*8=48см². Можно решить по теореме Герона: S=√p(p-a)(p-b)(p-c), где р - полупериметр, а,b и c - стороны. Тогда S=√16*6*6*4=48см² ответ: площадь треугольника равна 48см²
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°