ответ: остроугольный
Объяснение:
Самый большой угол напротив стороны 1,8. Применим к нему теорему косинусов:
1,8^2 = 1^2 + 1,5^2 -2*1*1,5*cos x
3,24 = 3,25 - 3 cos x
cos x = 1/300
cos x > 0
Значит самый большой угол острый, тогда все углы треугольника острые, значит он остроугольный
Найдем координату точки F. F- точка , которая делит пополам сторону АВ ( так как CF - медиана).
F = ( (Xa+Xb)/2 ; (Ya+Yb)/2) = ((-1+3)/2 ; (4+2)/2)= (1;3).
Вектор CF = (1-1; 3-(-3)) = (0; 6).
Уравнение медианы CF: (x - 1)/0 = (y - 4)/6.
Получаем общее уравнение CF: 6x - 6 = 0 или х - 1 = 0.
Находим уравнение стороны АС.
Вектор АС = (1-(-1); -3-4) = (2; -7).
Уравнение АС: (x + 1)/2 = (y - 4)/(-7) или в общем виде 7x + 2y - 1 = 0.
Находим угол α между прямыми АС и CF.
cos α = (1*7 + 0*2)/(1*√53) = 7√53/53.
Угол α = 15,9454°.
ответ: ∡ACF=arccos(3*√5/10)
Объяснение:
1. Найдем координату точки F. F- точка , которая делит пополам сторону АВ ( так как CF - медиана)
F = ( (Xa+Xb)/2 ; (Ya+Yb)/2) = ((-1+3)/2 ; (4+2)/2)= (1;3)
2. Найдем длину медианы CF:
CF=sqrt( (Xf-Xc)²+(Yf-Yc)²)= sqrt((1-1)²+ (3-(-3))²)=sqrt(0+9)=3
3. Найдем AF =sqrt ((Xf-Xa)² +(Yf-Ya)²)= sqrt ((1-(-1))²+(3-4)²)= sqrt(2²+1²)=√5
4. Найдем АС=sqrt((Xc-Xa)²+(Yc-Ya)²)=sqrt((1-(-1))²+(-3-(-4))²)=sqrt(2²+1²)=√5
=> ΔACF- равнобедренный (AС=AF).
=>cos ∡ACF= 3/√5/2=3*√5/10
∡ACF=arccos(3*√5/10)
Вычислим квадраты сторон треугольника:
(м).
(м).
(м).
Попробуем сравнить квадрат больше стороны с суммой квадратов двух других. Получим:
, из чего следует, что треугольник - остроугольный (если бы писали теорему косинусов, то у нас получилось бы, что слагаемое ; следовательно ∠С - острый, а из того факта, что против больше стороны треугольника лежит больший угол, следовало, что ни ∠А, ни ∠В не превосходят острый ∠С - т.е. являются острыми).