Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или 18/12=АС/18. Отсюда АС=18*18/12=27. Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения: Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB. Пусть <ABC=<ADB=α. Тогда по теореме косинусов из треугольника АВС: АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1) По теореме косинусов из треугольника АВD: АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα. Отсюда Cosα= -1/8. Подставим это значение в (1): АС²=2*18²(1+1/8)=729. Или АС=√729=27. DC=АС-АD или DC=27-12=15. ответ: DC=15.
Биссектрисса делит угол на два равных угла по определению. перпендикуляр с биссектриссой делят треугольник на четыре части две из которых образуют два прямых треугольника с одной вершиной. Достаточно доказать что эти два треугольника равны и будет доказано что их гипотенузы так же равны.Но у них два одинаковых угла : первые образованы биссектрисой и по определению равны.Вторые прямые ( по определению перпендикуляра) и также равны между собой и равны 90 градусов.Т.к. сумма углов в треугольнике равна 180 градусам ,то это значит и третьи углы в треугольниках равны. А следовательно и треугольники равны между собой.следовательно у них равные гипотенузы, как собственно и катеты.
АВСМ - трапеция, ВС//АМ, АВ=СМ, АС _I_ СМ, ВС=15см, АМ=39см
S - ?
ВР и СК _I_ АМ
КМ = (39-15)/2=12 (см)
АК=39-12=27 (см)
Треугольник АСМ - прямоугольный:
СК=√(АК*КМ)=√(12*27)=2*9=18 (см)
S = СК*(ВС+АМ)/2 = 18*27 = 486 (см²)