М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
popovichmilanap06lkc
popovichmilanap06lkc
14.05.2023 14:21 •  Геометрия

Можно ли решить вот такую ?
дано: abc - равнобедренный треугольник. боковые стороны - a, основание -b. p - периметр треугольника и s - площадь.
найти стороны треугольника. достаточно ли для решения этих данных?
пока что дальше уравнения продвинуться в решении не удалось. можно ли решить это уравнение? 16s^{2} =p^{2}b^{2}-2pb^{3}

👇
Открыть все ответы
Ответ:
Сабусик12
Сабусик12
14.05.2023

Задание: 3

Из условия AA1 = BB1 = CC1 = DD1 = 2AB = 2BC = 2CD = 2AD. Высота правильной призмы равна ее высоте AA1. AA1 = 8см, AB = AA1/2 = 4 см. Поскольку AF = AB и BC = CP = 4 см, то стороны треугольника BF и BP равны 8 см. Чтобы найти площадь основания пирамиды, нужно найти площадь прямоугольного треугольника FBP с прямым углом B. Площадь прямоугольного треугольника можно выразить через катеты, то есть S = (FB*BP)/2, S = (8*8)/2 = 64/2 = 32 см^2.

Объем пирамиды: V = (S(BFP)*BB1)/3, V = (32*8)/3 = 256/3 см^3

4,6(14 оценок)
Ответ:
Nastya26061
Nastya26061
14.05.2023
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
4,5(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ