1)Диагонали под прямым углом пересекаются только в ромбе или в квадратеи так как ромб является частным случаем параллелограмма ,то он не может являться нашей искомой фигурой. А квадрат является разновидностью трапеции, у которой диагонали пересекаются под прямым углом, значит наша фигура- квадрат со стороной 8 см , отсюда площадь квадрата равна 8*8=64 см^ 2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :) пойдёт?:)
Объяснение:
1) Рассмотрим треугольники EFD и CFD:
EF=CF, <EFD= <CFD - по условию, DF - общая.
Следовательно треугольники равны по двум сторонам и углу между ними ( І признак равенства треугольников).
Из равенства треугольников следует равенство сторон и углов: DE=DC, <EDK=<CDK.
2) Рассмотрим треугольники EDK и CDK:
DE=DC, <EDK=<CDK - доказано в п.1, DK - общая.
Треугольник EDK = треугольнику CDK по двум сторонам и углу между ними ( І признак равенства треугольников).
Из равенства треугольников следует равенство углов: <DEK=<DCK, что и требовалось доказать.