Площадь круга, как Вы помните, находят по формуле S=πr² Радиус находим из остроугольных треугольников, образовавшимися диагоналями при меньшей стороне прямоугольника.
Эти треугольники - равносторонние, т.к. угол при пересечении диагоналей равен 60°, а сами диагонали делятся пополам и этим образуют равнобедренные треугольники, углы которых при основании, равном меньшей стороне вписанного прямоугольника, тоже равны 60°.⇒cледовательно, каждая половина диагонали равна меньшей стороне прямоугольника. А так как диагонали здесь являются диаметрами окружности, то радиус описанного круга тоже равен меньшей стороне прямоугольника. r=10 см
Проведем высоту BH S=(AD+BC)* 1/2*ВH. Рассмотрим треугольник АВН. угол А=60 АВ=16, угол ВНА=90. Значит треугольник АВН-прямоугольный угол А+угол АВН=90 градусов( свойство острых углов прямоугльного треугольника) угол АВН=90-60=30 градусов АН=1/2АВ(Свойство катета лежавшего напротив угла в 30 градусов) АН=8 Проведем высоту СN (Там все точно такое же как и в первом треугольнике ) DN=8 Найдем НN HN=AD-(BH+HN) HN=4 Рассмотрим прямоугольник HBCN HN=BC=4 Найдем высоту BH AB=BH+AH каждая сторона в квадрате(теорема Пифагора) BH=AB-AH( каждая сторона в квадрате BH=256-64=192 BH= корень из92=8кореньиз 3 S=(20+4)*1/28* 8 корень из 3=96кореньиз 3
Площадь круга, как Вы помните, находят по формуле
S=πr²
Радиус находим из остроугольных треугольников, образовавшимися диагоналями при меньшей стороне прямоугольника.
Эти треугольники - равносторонние, т.к. угол при пересечении диагоналей равен 60°, а сами диагонали делятся пополам и этим образуют равнобедренные треугольники, углы которых при основании, равном меньшей стороне вписанного прямоугольника, тоже равны 60°.⇒cледовательно, каждая половина диагонали равна меньшей стороне прямоугольника. А так как диагонали здесь являются диаметрами окружности, то радиус описанного круга тоже равен меньшей стороне прямоугольника.
r=10 см
S=πr²,
S=100 π см²