1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Треугольники называются равными, если они совпадают при наложении. Да, это правило совершенно верно, но существует ещё одно правило про равенство треугольников...
Фигуры (в том числе и треугольники), симметричные относительно прямой, равны.
Это правило и отвечает на Ваш вопрос.
К тому же, треугольники, симметричные относительно какой-то прямой ( или оси ) совпадают при наложении. Во вложении к этому ответу есть картинка, по которой в этом можно убедиться. Если зрительно наложить один треугольник на другой, то они совпадут.