DAG =90-DAE =BAE
△ADG=△ABE (по двум сторонам и углу между ними)
G=AEB=90 => BEK - развернутый.
S - площадь ABCD, S1 - искомая
S(BKC) =1/4 S
ABE =90-KBC =BKC
△ABE~△BKC
CK=x, BC=2x, BK=x√5 (по теореме Пифагора)
AB/BK =2/√5
S(ABE) =(2/√5)^2 *S(BKC) =4/5 S(BKC) =1/5 S
S1 =S(BKC) +S(ABE) =(1/4 +1/5)S =9/20 S
S1 =20^2 *9/20 =180
а) Возьмем угол С прямой. Получим теорему Пифагора, косинус прямого угла равен нулю. а=3, в=4, с=5.
Можно взять угол С тупой, тогда срабатывает теорема косинусов, при условии выполнения неравенства треугольников такой треугольник будет существовать.
ответ Существует.
б) Отношение а к с равно отношению косинуса А к косинусу С. Возьмем, например, угол А и угол С по 45°, а угол В прямой. Тогда при выполнении неравенства треугольников такой треугольник прямоугольный равнобедренный существует.
в) Если угол В прямой, а угол А равен 30°,
сторона с =а√3, в=2а
ответ Существует
ответ: 180.......................................