Точка х делит ребро ав куба abcda1b1c1d в отношении ах : хв = 2 : 3. постройте сечение этого куба плоскостью, которая параллельна плоскости аа1с1 и проходит через точку x. найдите периметр сечения, если ав = а.
Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.