1)а. Возьмем тр. АВС с основанием АС.угол В=62 => угол А=угол С => 58= сторона АС большая.( против бОльшего угла лежит бОльшая сторона) б. Возьмем тр. АВС с основанием АС. угол В = 58 => угол А= угол С = 61=> стороны АВ и ВС большие ( в равнобедренном треугольнике 2 стороны равны) 2)а. рассмотрим тр. АВС, где угол А> угол В> угол С=> сторона ВС >сторона АС> сторона АВ б. рассмотрим тр. АВС, где угол А = угол В< угол С => сторона АС = сторона ВС< сторона АВ 3)нет. против большего угла лежит большая сторона, а тупой угол всегда является самым большим в треугольнике. 4) задачу можно решить, только если точка N находится вне треугольника АОВ. рассмотрим треугольники АОN = ВОN (АN=ВN, угол ОАN=угол ОВN, ОN- общая)=> угол АОN = угол ВОN => точка N лежит на биссектрисе угла АОВ.
1) Рассмотрим треугольник ЕВС - прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°. Тогда, ∠ЕВС = 90°-60° = 30°. Против угла в 30 градусов лежит катет, равный половине гипотенузы. ЕВ = 7*2 = 14.
2) Рассмотрим треугольник АВЕ. ∠АЕВ = 180°-60° = 120° (так как он смежный с углом ВЕС). ∠ АВЕ = 180°-120°-30° = 30°. Итак, углы АВЕ и ВАЕ треугольника АВЕ равны, следовательно, он равнобедренный.
3) AE = EB = 14 (это боковые стороны, так как лежат напротив равных углов в одном треугольнике.)
ответ: 14.