Площадь квадрата, вписанного в круг, равна 16 см². Найти площадь сегмента, основанием которого является сторона квадрата.
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см) 2. Находим диагональ квадрата, которая является диаметром описанного круга: D²=2a² => D=√(2a²) = √32 = 4√2 (см) 3. Находим площадь круга: S₁= 1/4 πD² = 8π = 25,12 (см²) 4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата: 4S' = S₁ - S = 25,12 - 16 = 9,12 S' = 9,12 : 4 = 2,28 (см²) ответ: 2,28 см²
А) Каждая сторона параллелограмма является параллельным переносом противолежащей стороны. При параллельном переносе отрезка в пространстве, каждая его произвольная точка (x; y; z) переходит в точку с координатами (x + a; y + b; z + c)
Найдем числа a, b, c в случае параллельного переноса отрезка AB в отрезок CD.
Для этого рассмотрим параллельный перенос точки B в точку C: (6 + a; -6 + b; 2 + c) = (10; 0; 4)
Соответственно: a = 10 – 6 = 4; b = 0 – (-6) = 6; c = 4 – 2 = 2
Аналогично рассмотрим параллельный перенос точки A в точку D: (-6 + a; -4 + b; 0 + c) = (-6 + 4; -4 + 6; 0 + 2) = (-2; 2; 2)
1. Находим сторону квадрата: S=a² => a=√S = √16 = 4 (см)
2. Находим диагональ квадрата, которая является диаметром описанного круга:
D²=2a² => D=√(2a²) = √32 = 4√2 (см)
3. Находим площадь круга:
S₁= 1/4 πD² = 8π = 25,12 (см²)
4. Площадь четырех искомых сегментов круга равна разности между площадью круга и площадью вписанного квадрата:
4S' = S₁ - S = 25,12 - 16 = 9,12
S' = 9,12 : 4 = 2,28 (см²)
ответ: 2,28 см²