М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
йАнанасик11
йАнанасик11
22.03.2021 07:34 •  Геометрия

Найдите сторону треугольника, если радиус круга, описанного вокруг треугольника равняется 3 корней из 3

👇
Ответ:
malikamalik1406
malikamalik1406
22.03.2021

r = \frac{a}{ \sqrt{3} } \\ a = r \sqrt{3} = 3 \sqrt{3} \times \sqrt{3} = 9

эта формула для равностороннего треугольника.

4,6(79 оценок)
Открыть все ответы
Ответ:
Zoomf
Zoomf
22.03.2021
Построим сечение пирамиды плоскостью ABK. K∈ грани PCD.
1) Отметим для определенности вершины основания пирамиды таким образом:
На заднем плане слева направо D и A, на переднем слева направо C и B
AB паралл CD. CD∈PCD. AB∉PCD.
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости. Значит, AB парал плоскости PCD. Или грань PCD парал AB.
Точка K∈PCD. В этом случае секущая плоскость будет пересекать эту грань по отрезку KL парал следу AB. L∈PD⇒ABKL - секущая плоскость. Это будет равнобедренная трапеция
KL - линия пересечения плоскостей ABK и PCD.
KL∉ABC - плоскости основания пирамиды
KL парал AB - по построению
AB∈ плоскости ABC⇒KL парал ABC по выше указанной теореме.
2) Нужно найти площадь ABKL. Отметим точки и соединим их:
E - середина KL; N - середина AB. EN - высота трапеции.
S=1/2(KL+AB)*EN
AB=12 - по условию
a) Для нахождения KL рассмотрим тр-ки PCD и PKL. Они подобны. Из подобия записываем пропорциональность сторон:
CD:KL=PC:PK
РК:КС=1:3⇒PC:CK=4:1⇒CD:KL=4:1⇒KL=1/4*CD=1/4*12=3
Итак, KL=3
б) Теперь займемся поиском EN.
Проведем апофемы PM и PN, где PM∈ грани PCD, PN∈ грани PAB
O - центр основания (точка пересечения диагоналей AC и BD)
Соединим точки M и N. O∈MN. MN=12
Так как каждое ребро равно 12, то боковые грани - равносторонние тр-ки
Апофемы - высоты равносторонних тр-ков. Если a - сторона правильного тр-ка, то a√3/2 - его высота. Значит, PM=PN=12*√3/2=6√3
Построим отдельно тр-ник MPN. Он  - равнобедренный
Соединяем точки E и N.
PO - его высота. MO=ON=6⇒по теореме Пифагора
PO^2=PM^2-MO^2=(6√3)^2-6^2=6^2(3-1)=36-2=72⇒PO=√72=√36*2=6√2
Проведем EF парал PO. Тогда EN можно найти из тр-ка EFN. Для этого нужно знать длины отрезков EF и FN.
Из подобия выше рассмотренных тр-ков PM:PE=4:1
Рассмотрим тр-ки OMP и FME. Они подобны⇒
MP:ME=PO:EF=MO:MF
MP:ME=4:3⇒EF=3/4*PO=3/4*6√2=9/2*√2; MF=3/4*MO=3/4*6=9/2
FN=FO+ON=OM-MF+ON=MN-MF=12-9/2=15/2
EN^2=EF^2+FN^2=(9/2*√2)^2+(15/2)^2=(3/2)^2*3^2*2+(3/2)^2*5^2=
=(3/2)^2*(18+25)=43*(3/2)^2⇒
EN=3/2*√43 - высота трапеции

S=1/2(KL+AB)*EN=1/2*(3+12)*3/2*√43=45√43/4
ответ: S=45√43/4
4,4(55 оценок)
Ответ:
Анита1002
Анита1002
22.03.2021
Пусть в трапецию ABCD, AD=16, BC=4 вписана окружность. Радиус окружности, вписанной в трапецию, равен половине высоты трапеции. Если в трапецию можно вписать окружность, значит, суммы её противоположных сторон равны, то есть, сумма 2 боковых сторон равна сумме оснований - 16+4=20, а так как боковые стороны равны, то каждая из них равна 20/2=10. Проведём высоты BE и CF. Четырехугольник BCFE является прямоугольником, так как все его углы прямые. Тогда EF=BC=4. Треугольники ABE и CDF равны по катету и гипотенузе (AB=CD; BE=CF). Тогда AE=DF=(AD-EF)/2=(16-4)/2=6. В прямоугольном треугольнике ABE гипотенуза AB равна 10, а катет AE равен 6. Тогда катет BE по теореме Пифагора равен √10²-6²=√100-36=√64=8. Отрезок BE является высотой трапеции и равен 8, тогда радиус вписанной окружности вдвое меньше и равен 8/2=4 см.
Вравнобедренную трапецию с длинами оснований 4 и 16 см вписана окружность. чему равен ее радиус (см)
4,8(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ