1. Пусть меньшее основание трапеции - х, тогда большее основание х + 6. 2. Площадь трапеции равна произведению полусуммы ее оснований на высоту:. Т.е.: x 8 = 120 2x+6 = 30 2x=24 x=12 3. Меньшее основание трапеции 12 см, большее 12 + 6 = 18 см 4. Опустим из вершины трапеции перпендикуляр к ее большему основанию (см. рисунок). Нужно узнать сторону с. Мы видим, что получился прямоугольный треугольник. Нам нужно найти его гипотенузу, зная катеты. Больший катет треугольника равен высоте - 8 см. Меньший катет равен 18 - 12 = 6 см. 5. По теореме Пифагора находим с: с = √6² + 8² = √100 = 10 см
есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2
Объяснение:
Сечение шара - круг с центром А.
АВ = r - радиус сечения.
Sсеч = πr²
33π = πr²
r = √33 см.
Отрезок, соединяющий центр шара с центром сечения, перпендикулярен сечению.
ОА перпендикулярен сечению, значит ОА = 6 см - расстояние от центра шара до сечения.
ОВ = R - радиус шара.
ΔАВО: ∠ОАВ = 90°, по теореме Пифагора
R = √(ОА² + АВ²) = √(36 + 33) = √69 см
V = 4/3 πR³ = 4/3 π · 69 = 92π см³