Для решения применим теорему Фалеса: Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Чтобы без линейки с делениями разделить отрезок, длина которого не известна, нужно от одного из концов этого отрезка провести под углом к нему вс луч и на этом луче на равном расстоянии отметить нужное количество точек.
а) На вс луче отложим через равные промежутки 2+5 =7 точек. Затем через последнюю точку и конец заданного отрезка проведём прямую и через все точки ещё 6 прямых, параллельных ей. При этом заданный отрезок будет разделен на 7 равных частей. Отсчитаем 2 из получившихся отрезков. Остальная часть равна 5 отмеренным отрезкам, а исходный разделен в отношении 2:5
Можно на заданном отрезке откладывать не 7 отрезков, а провести всего 2 прямые - через седьмую и параллельно ей через вторую точку. Заданный отрезок будет разделён в нужном отношении.
б) и в) делим точно так же.
Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение.
Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?