Обозначим длину биссектрисы через х. один из острых углов через а , второй тогда 90-а. биссектрисса делит треугольник на два. теорема синусов для обоих треугольников. х/sin a = 15/ sin 45. x/ sin(90-a) = 20/ sin 45 sin 90-a= cos a откуда 15 sin a = 20 cos a tg a = 4/3 гипотенуза 35 катеты 28 и 21 пифагоров треугольник 3 4 5 с коэффициентом подобия 7. опустим высоту на гипотенузу. если tg a = 4/3 , то sin a = 4/5 cos a = 3/5. опять же из пифагорова треугольника. гипотенуза поделиться высотой на отрезки 21 * cos a = 12.6 28* cos(90-a)= 28* sin a= 22.4
Острый и тупой угол трапеции, прилежащие к одной и той же боковой стороне в сумме равны 180°. У нас равнобедренная трапеция. Это значит в ней два одинаковых острых и два одинаковых тупых угла, и поэтому неважно, противолежащие они или нет. Таким образом, зная разность и сумму острого и тупого углов (они жн противолежащие), легко вычислить углы. Обозначим любой из углов, например, тупой, как икс. А острый как игрек. Тогда Y=Х-40 или Y=180-Х, значит Х-40=180-Х; 2Х=180+40; Х=220:2=110°; Y=110-40=70° ответ: тупые углы равны 110°, а острые углы равны 70°
один из острых углов через а , второй тогда 90-а.
биссектрисса делит треугольник на два.
теорема синусов для обоих треугольников.
х/sin a = 15/ sin 45.
x/ sin(90-a) = 20/ sin 45
sin 90-a= cos a
откуда
15 sin a = 20 cos a
tg a = 4/3
гипотенуза 35 катеты 28 и 21
пифагоров треугольник 3 4 5 с коэффициентом подобия 7.
опустим высоту на гипотенузу.
если tg a = 4/3 , то sin a = 4/5 cos a = 3/5.
опять же из пифагорова треугольника.
гипотенуза поделиться высотой на отрезки
21 * cos a = 12.6
28* cos(90-a)= 28* sin a= 22.4