Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Пусть острый угол параллелограмма равен х°, тогда тупой угол параллелограма равен 180-х°, а угол между высотами параллелограмма (180-х°):3= 60 -х/3.Проведем из вершины тупого угла высоты к сторонам параллелограмма( одна - к большей стороне, другая - к продолжению меньшей). Получаем два прямоугольный треугольника с острыми углами х° и 90-х°.Теперь при вершине тупого угла образовались три угла, составим уравнение:90-х° + 90-х°+60 -х/3= 180 -х-х-х/3 = -604/3 х= 60х=45?Значит, острый угол параллелограмма равен 45?, а тупой 135?ответ: два острых угла по 45?, и два тупых угла по 135?.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.